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Density of states of sparse random matrices 
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Abstract. A supersymmetric formalism is used to derive a set of equations giving the density 
of states of any real, symmetric, sparse random matrix as a function of the distribution of 
non-zero elements and the mean number of non-zero elements per row, p .  In the matrix 
where the non-zero elements take the values *1 with equal probability the equations are 
solved as p -* cc recovering results obtained previously with the replica method. As E -* 0 
the density of states p ( E )  behaves as 1/E( ln(E))2 .  The more general case where * l  occur 
with unequal probabilities is also considered. 

1. Introduction 

In this paper we use anticommuting variables to derive a set of equations which 
determine the eigenvalue spectrum of a set of large, sparse random matrices. These 
matrices have a mean finite number p of non-zero elements per row and a general 
distribution p ( J )  of non-zero elements. Although the eigenvalue spectra of large 
random matrices have been studied for some time (e.g. Mehta 1967) there are very 
few results for matrices which are sparse. 

Matrices such as these arise in the study of mean field spin systems in which the 
exchange interactions are very dilute, but of infinite range, so that the average con- 
nectivity is finite. These models fall into two classes: random lattices with either 
average finite connectivity (Viana-Bray models, see Viana and Bray (1983, Mezard 
and Parisi (1987), Kanter and Sompolinsky (1987)) or fixed connectivity. The latter 
class is related to that of a spin system on a Bethe lattice, although care must be taken 
with the boundary conditions on a Bethe lattice due to the finite fraction of spins on 
the surface (see for instance Carlson et a1 1988, Lai and Goldschmidt 1989). These 
systems are closely connected with combinatoric optimisation problems such as colour- 
ing, matching, graph partitioning and the travelling salesman problems. In this paper 
we consider the first class of models with finite mean connectivity only. 

In a previous study (Rodgers and Bray 1988) the replica method was used to 
evaluate the eigenvalue spectrum of a matrix with p mean, non-zero elements per row. 
These non-zero elements took the values *l with equal probability. A nonlinear 
integral functional equation was found, the solution of which led to the density of 
states. For p + c o  a generalised Wigner semicircle was obtained and for finite p the 
Lifshitz tails extending beyond the semicircle were calculated. 

This study was motivated by a desire to understand the role which Griffiths 
singularities (Griffiths 1969) played in the statics and dynamics of dilute spin systems 
in the Griffiths phase (i.e. at a temperature between the transition temperatures of the 
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dilute and non-dilute systems). This is a question which has received much recent 
interest (e.g. Dhar 1983, Randeria et a1 1985, Bray 1987, Bray and Rodgers 1988). It 
has been argued (Bray and Moore 1982, Hertz et a1 1979) that the Griffiths phase is 
controlled by the spectrum of the inverse of the susceptibility matrix. However 
determination of the inverse of the susceptibility matrix is a highly nonlinear problem 
so as a first step the exchange matrix was considered. These two matrices are linearly 
related at high temperature. 

In this work we use anticommuting variables in an attempt to repeat and extend 
the same calculation. This approach allows us to examine the problem of replica 
symmetry breaking and also to consider a larger class of matrices where the non-zero 
elements take a general distribution p ( J ) .  The result can be formulated as a set of 
three nonlinear integral functional equations, the solution of which leads to the density 
of states. Inserting the symmetric distribution p ( J )  = [ S ( J +  1)+ S ( J -  1)]/2 leaves 
three non-trivial equations which we cannot reduce to the one obtained from the replica 
method. However, to order l / p  in a large p expansion, the two methods reveal the 
same results. The case of a non-symmetric distribution is also examined. 

2. Eigenvalue spectrum 

A real symmetric N x N matrix J is considered where the elements are independently 
distributed with a probability distribution 

P ( J , )  = ( 1 -P/ " J , )  + (P/ WdJ,,). (1) 
Hence p is the mean number of non-zero elements per row and we assume p(J , )  

The normalised average density of states p ( p )  for a particular realisation of the 
is normalised and has no delta function at J,] = 0. 

disorder {J,,} is given by the Green function 

with 

p ( p )  = l / ~  Im G(w +ie)  

where E > 0 is infinitesimal. 
To evaluate p ( p )  we introduce the generating function 

so that 

i a  
G ( p )  = - - In Z ( p ) .  

N aP 

(3) 

We will evaluate G ( p )  and average over {J,} by introducing Grassmannian variables 
via Berezin's formula (Berezin 1967, Efetov 1983) 
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where { 7,) are anticommuting variables. These variables satisfy Grassmannian integra- 
tion rules, namely I d77 drl*(l, 77, 77*, 7717*) = (0,0,0,1) ( 7 )  

and the commutation relations 

771771 + TJTI = 7J7l* + 7777, = 0 77hf+a777?=0. (8) 
If the differentiation in (5) is formally performed and the denominator rewritten 

in terms of (7,) we obtain 

G ( P )  = D4 D77 exp{ P c (4?4, + 77?71) I 
(9) 

~, (4?4j+ .o?7j+m:4.+77:7 i ) }~c  1 4:4t 
I ‘I 1 

where Dx = IIl(dx, dx?) and we have used the fact that J is symmetric. 

1983) and the anticommuting variables 8 and e* via 
This expression can be simplified by introducing the superfields {al( e ) }  (see Efetov 

= 4 1 + ~ : o + e * 7 1 + 4 ? e e *  (10) 
where 8 and e* are independent of {4,, d?} and {q,, 7:). Thus the integrals of { @ , ( e ) }  
over 0 and e* give 

1 de  de* @! ( ‘ ) @ J  ( e )  = 474: + 4742 + 77: VJ + 77 7 7 1  (11) 

and (9) becomes 

G ( P ) = I  D@DVeXP{l  ded@*(:c@:(B)- ( 1 . J )  J l , @ , ( e ) @ J ( e ) ) } ~ c 4 ? 4 1 .  (12) 

Averaging over the probability distribution of { J , }  (1) and dropping the subextensive 
terms gives 

where 

(-1y 
b, =- 

As the superfields Qi( 6 )  are commuting variables the identity 

holds and we can rewrite G ( p )  as 
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where 

W = D 4  DT) exp y;'. , 8 , @ ( O i ) .  . . @(e,) d e I  . . . de, d e ? .  . . de? 5 
The variables {y\L\} are given by the saddle point 

Y:) . . .  6, = ( @ ( e l ) . .  . @ ( e r ) )  ( 1 8 )  

where ( . . . ) represents a normalised average over the integrand W. If we introduce 

Now F($ ,  p )  can always be parametrised as 

F($ ,  P )  = 4 4 ,  + * I +  NIL, $ * ) P * P  

and if A($,  $*) has a coefficient A,  on its $$*term and p ( J ) = [ S ( J + l ) + S ( J - 1 ) ] / 2  
then G ( p )  = A , .  

These equations are our main result and give the eigenvalue spectrum of any sparse 
random symmetric matrix with independent random elements. 

3. Solutions 

Equation ( 2 0 )  is difficult to solve in general and we restrict ourselves to the case where 
the non-zero elements take the values * l  with equal probability. This is the problem 
which has already been considered with the replica method (Rodgers and Bray 1988); 
the eigenvalue spectrum in the large p limit was found to be given by 

and p ( p )  = 0 otherwise. pf is given by 

This result can be obtained using the supersymmetric formalism. The first step is 

*e""4, 4: * e - ' " 4 ?  T) ,  *e'"v q?3e-'"'T)?. (24) 

to notice that when p ( J )  is symmetric the following gauge transformations hold: 
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Hence A( $, $*) = A( $$*) and B (  $, +*) = B (  $I)*). Introducing variables E = -p,  
U = E44* and U = E$$* into (20) gives 

Z = -!- E IoE d u  ex p( PA( i) - U} [ B( i) - E ]  

A( i ) Z  = lox du exp{ PA( ;) - U} 

B (i) Z = loE du ex p{ PA( :) - U} Io( 2 J( u u ) )  J 2 p  ( J )  d J 

G ( E ) Z  =A E IoE du U exp( PA(:) -U}[ B ( s )  - E ] .  

In the case where the non-zero elements only take the values i l  (28) may be 
replaced by 

G ( E ) = A ,  (29) 

if A ( x )  = 1 + A , x + O ( x * ) .  

from the replica method; there seems to be no simple relationship between them. 
This set of equations is much more complicated than the equivalent set obtained 

The large p expansion reveals the same results for p ( p ) ;  if we write 

“ A  s A(’)  
A ( u ) = l +  c U’< where A , =  e 

r - l  p r = ~  p 

and 

and expand (25)-(27) to order 

1 
AY = 

E * ( I - A : )  

and 

l / p  and eliminate Bo and BA we obtain 

These equations combined with (29) give p ( p )  as obtained by the replica method 
(22) and (23). 

The equations (25)-(27) can also be solved for E +O, giving the eigenvalue density 
in the centre of the spectrum. Making the change of variables U ’ =  u / E  in (25)-(27) 
and expanding the Bessel functions for small E gives 

i 
and B ( u ) - -  

U U 

A 
A ( u ) - -  (33) 
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where 

and hence using (28) and (3) we get 

We have also tried to solve equations (25-27) when p ( J )  is non-symmetric, e.g. 
where p ( J )  = 6 ( J -  1). This means that A(+, +*) and B ( + ,  +*) can be functions of 
two independent variables, not one as before. We were, however, unable to find a 
self-consistent solution as p + CO. This suggests that A( +, +*) = A( +$*) and B (  +, +*) = 
B(+,+*)  for this non-symmetric distribution and hence that at least for p + 03 matrices 
with distribution 

P ( L )  N 
P ( J )  = 1 -- 8 ( J ) + -  [ & ( J  - 1)+ ( 1  - c ) 6 ( J +  l)] 

where 0 s c s 1, all have the same eigenvalue density as p + 03. 

This seems plausible if one considers the matrix in question. It is very dilute, the 
non-zero elements are very rare, so in calculating the determinant the sign of the 
non-zero entry is determined at random by its position in the matrix. Thus the sign 
of the entry has no effect. 

To conclude, we have used a supersymmetric formalism to calculate the density of 
states of a real symmetric sparse random matrix with an arbitrary distribution of 
non-zero entries. For the case where the non-zero entries took values *1 with equal 
probabilities, an explicit expression was obtained for the density of states as the mean 
number of non-zero entries per row went to infinity (22). This result coincided with 
a result obtained with the replica method assuming replica symmetry (Rodgers and 
Bray 1988) in the p + 03 limit. We also obtained an expression for the density of states 
in the centre of the spectrum ( 3 5 ) .  Finally we gave a heuristic argument which suggests 
that these results hold for the case of non-symmetric entries, i.e. when *1 occur with 
unequal probabilities. 
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